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Oscillatory Notch-pathway activity in a delay model of neuronal differentiation
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Lateral inhibition resulting from a double-negative feedback loop underlies the assignment of different fates
to cells in many developmental processes. Previous studies have shown that the presence of time delays in
models of lateral inhibition can result in significant oscillatory transients before patterned steady states are
reached. We study the impact of local feedback loops in a model of lateral inhibition based on the Notch
signaling pathway, elucidating the roles of intracellular and intercellular delays in controlling the overall
system behavior. The model exhibits both in-phase and out-of-phase oscillatory modes and oscillation death.
Interactions between oscillatory modes can generate complex behaviors such as intermittent oscillations. Our
results provide a framework for exploring the recent observation of transient Notch-pathway oscillations during

fate assignment in vertebrate neurogenesis.
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I. INTRODUCTION

As in many electronic circuits, classes of oscillators and
switches are fundamental elements in many gene regulatory
networks [1,2]. In particular, a double-negative feedback
loop comprising two mutually repressive components is
known to be capable of functioning as a toggle switch, al-
lowing a system to adopt one of the two possible steady
states (corresponding to cell fates) [3,4]. In the context of
developmental biology, such bistable switch networks can
operate between cells and are believed to drive cell differen-
tiation in a wide range of contexts. However, in naturally
evolved (rather than engineered) gene regulatory networks,
double-negative feedback loops rarely exist in a “pure” form,
and interactions between loop components and other network
components often result in sets of interconnected feedback
loops. Furthermore, if loop interactions involve the regula-
tion of gene expression, then interactions are delayed rather
than instantaneous. The present study investigates the dy-
namic behavior of a double-negative feedback loop when the
nodes of the loop are involved in additional feedback loops
and when the regulatory steps constituting the resulting net-
work involve significant time delays.

A particularly well-documented example of a biological
double-negative feedback loop is centered on transmembrane
receptors of the Notch family. Notch signaling, resulting
from direct interaction with transmembrane ligands of the
Delta, Serrate, and Lag-2 (DSL) family on neighboring cells
mediates an evolutionarily conserved lateral inhibition
mechanism that operates to specify differential cell fates dur-
ing many developmental processes [5-8]. Although gene no-
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menclature varies between different organisms, a core
circuitry—the neurogenic network—underlying lateral inhi-
bition can be identified and is illustrated schematically in
Fig. 1 [9,10]. In brief, signaling between neighboring cells is
mediated by direct (juxtacrine) interactions between Notch
receptors and DSL ligands. A double-negative feedback loop
is formed by the repression of DSL ligand activity by Notch
signaling in the same cell (cell autonomous repression) [Fig.
1(a)]. Mathematical models of such a spatially distributed
double-negative feedback loop are capable of generating ro-
bust spatial patterns of Notch signaling in populations of
cells [9].

In many developmental settings, the level of Notch sig-
naling regulates the fate adopted by a cell by acting as an
input to a cell autonomous bistable switch formed by one or
more proneural genes (such as achaete and scute in Droso-
phila and neurogenin and atonal in vertebrates) [11]. The
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FIG. 1. The neurogenic network models in a two-cell represen-
tation. The letters on the nodes correspond to the key classes of
protein involved in the network. D: DSL ligand, N: Notch receptor,
H: Hes-Her proteins, A: proneural proteins (e.g., Achaete, Scute,
and Neurogenin). Edges represent two types of directional interac-
tions: activation (—) and repression (—). (a) The pure double-
negative feedback loop involving only DSL ligand and Notch re-
ceptor [9,15]. (b) A more detailed model that incorporates Hes-Her
negative feedback and proneural positive feedback [10].

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.021930

HIROSHI MOMIJI AND NICHOLAS A. M. MONK

basic principle underlying this switch is the ability of the
protein products of the proneural genes to positively regulate
transcription of proneural genes, resulting in a direct positive
feedback loop. In many systems, including the developing
nervous system, Notch signaling regulates the proneural
switch via regulation of the expression of proteins of the
Hes-Her family. These proteins act as transcriptional repres-
sors and can repress their own expression and interfere with
proneural self-activation [12]. Furthermore, proneural pro-
teins can also positively regulate the expression of DSL pro-
teins, forming a complete circuit of interactions as shown in
Fig. 1(b). Considered as an intercellular signaling network—
which we shall refer to as the neurogenic network—this cir-
cuit comprises a spatially distributed double-negative feed-
back loop with additional local positive and negative
feedback loops.

A detailed mathematical model of the neurogenic net-
work, incorporating Hes-Her negative feedback and proneu-
ral positive feedback, has been studied by Meir et al. [10],
who showed by computer simulation that the network is ca-
pable of generating spatial patterns of Notch signaling in
populations of cells. The models of Collier er al. [9] and
Meir et al. [10] incorporate the implicit assumption that all
interactions are nondelayed. However, in reality the basic
production mechanisms that regulate gene expression (gene
transcription and translation) are associated with time delays
[13,14]. Incorporation of explicit time delays in the pure
double-negative feedback loop shown in Fig. 1(a) results in a
competition between dynamic modes, with a stable spatial
patterning typically preceded by significant oscillatory tran-
sients [15]. In a biological context, such transients would
play an important role in delaying the onset of cell differen-
tiation in a developing tissue. Delays can also generate os-
cillatory dynamics in models of Hes-Her negative feedback
loops [16—19], and such oscillations have been observed ex-
perimentally [12,20,21].

As predicted by mathematical models [15,17], oscillatory
expression of DSL ligands, Hes-Her proteins, and proneural
proteins has recently been observed in neural precursors in
the developing mouse brain [22]. Furthermore, these oscilla-
tions have been predicted to play a central biological role in
delaying the onset of neural differentiation [22]. In principle,
these oscillations could be driven by the cell autonomous
Hes-Her negative feedback loop, with Notch signaling pro-
viding coupling between cells [17], or by the double-
negative feedback loop centered on the DSL-Notch interac-
tion [15]. In the following, we investigate the interplay
between local and intercellular feedback loops in models of
the neurogenic network, using a combination of linear stabil-
ity analysis and numerical simulations, emphasizing the dy-
namical effects of the multiple time delays in the network.
We study principally the case of two coupled cells, since this
captures the essential features of oscillator synchronization
and cell state differentiation. We also show how our results
extend to larger populations of coupled cells.

II. FULL Hes-Her-PRONEURAL MODEL
AND ITS DISSECTION

In Fig. 1(b), positive regulation of Hes-Her (H) by pro-
neural protein (A) in the adjacent cell, mediated by DSL-
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FIG. 2. The neurogenic network models examined in the present
study. 7: time delays, f: a general increasing function; g,h: general
decreasing functions. With an appropriate choice of time delay (1),
the model in (a) provides a simplified representation of the full
model shown in Fig. 1(b). The models in (a)-(d) have the potential
to exhibit both oscillations and differentiation, while the model in
(e) exhibits only differentiation.

Notch signaling can be considered simply as a cascade of
three low-pass filters. This simplification allows the model in
Fig. 1(b) to be reduced to the model in Fig. 2(a), where 7
denotes time delay, and f and g represent generic increasing
and decreasing functions, respectively. In this model, re-
ferred to hereafter as the full Hes-Her—proneural model, Hes-
Her proteins repress proneural proteins in the same cell (1 or
2), while proneural proteins activate Hes-Her proteins in the
adjacent cell. This main loop is supplemented by the two
local loops: Hes-Her autorepression and proneural autoacti-
vation. Each interaction is not instantaneous but involves a
time delay, typically on the order of minutes to tens of min-
utes [15-18]. The delays in the cell-autonomous regulatory
steps (7,—74) originate predominantly from processes asso-
ciated with gene transcription, whereby the DNA sequence
of a gene is transcribed into a corresponding mRNA mol-
ecule, while the delay in the non-cell-autonomous interaction
(7)) represents in addition processes involved in DSL-Notch
signaling, such as protein processing [23].

The models in Figs. 2(b)-2(e) are obtained by a sequential
reduction in the full neurogenic network. When Hes-Her
feedback is negligible, the full Hes-Her—proneural model in
Fig. 2(a) becomes the model in Fig. 2(b); while when pro-
neural feedback is negligible, the model in Fig. 2(a) becomes
the model in Fig. 2(c). When both local loops are negligible,
models (b) and (c) can be reduced to the model in Fig. 2(d).
Finally, because two sequential repressions function as a net
activation, the model in Fig. 2(d) can be further reduced to
the model in Fig. 2(e). Such simple network elements appear
repeatedly in gene regulatory networks (and possibly in other
biological and nonbiological networks) and are examples of
what are often called “motifs” [24]. The models in Figs.
2(b)-2(e) are called hereafter as (b) the autoactivation two-
proneural model, (c) the autorepression two-Hes-Her model,
(d) the nonautonomous proneural model, and (e) the autoac-
tivation single-proneural model.
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III. MATHEMATICAL REPRESENTATION OF THE FULL
Hes-Her-PRONEURAL MODEL

We represent Hes-Her and proneural proteins by a single
variable in each cell. To investigate the behavior of a net-
work quantitatively, it is convenient to scale each variable
such that it lies in the range [0,1]. The full Hes-Her—
proneural model [Fig. 2(a)] can then be represented by the
following differential equations with discrete delays:

TyH, =—H, + Py[A,(t— 7),H (1 - 73)], (1)
TWA =—A + P,[H (1 - 7),A,(t - 7,)], (2)
TyH,=—H,+ PylA(t— 7),Hs(1 - 73)], 3)
TyAy == Ay + PA[Hy(t = m),A5(1 = 7)], (4)

where Ty, and T, denote the degradation constants (the in-
verses of the linear degradation rates) of H and A, respec-
tively [10]. Py and P, are functions representing the rates of
production of H and A, respectively. The activating and the
repressive actions of the proneural and the Hes-Her proteins
are captured by the following constraints:

JoP JdP

>0, —H<o, (5)
JA JH

JP JdP

—A>0, <o (6)
0A oH

For our analysis of this and the reduced models, we need
assume no more about the production functions than condi-
tions (5) and (6). For numerical simulations, specific func-
tional forms must be assumed, and we take these functions to
be products of increasing (f) and decreasing (g or &) Hill
functions. Specifically, we assume that P;(A,H)=f,(A)g,(H)
for I=A or H, where

v

fl(x’K’ V) (7)

- K"+ x"

4

gl(x’K’ V)= (8)

K" +x"’
and K and v represent the scaled threshold and the Hill co-
efficient, respectively. However, the qualitative behavior of
the model solutions is preserved for other choices of produc-
tion functions that satisfy conditions (5) and (6).

Numerical simulations of this model reveal a range of
qualitatively different types of behavior, in which oscilla-
tions can be absent, transient, or sustained, and their phases
can be locked or not (for examples, see Fig. 3). To investi-
gate the origin of these behaviors, we reduce the full Hes-
Her—proneural model to a variety of simpler ones (see Fig.
2). The examination of these simpler networks (motifs) helps
one to elucidate the origins of the dynamics of the full Hes-
Her—proneural model.
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FIG. 3. (Color online) Examples of typical dynamics found in
numerical simulations of the full Hes-Her—proneural model shown
in Fig. 2(a) and defined by Egs. (1)—(8), displaying both differen-
tiation and oscillations. Oscillations can be transient or sustained
and can be in phase between two cells, or not. Values of the kinetic
parameters are set the same on each row and listed in Table I.
Delays are given in each panel as (7,75, 73, 74)

IV. ANALYSIS AND SIMULATION
OF REDUCED MODELS

In this study, we are concerned primarily with the routes
that cells take to differentiation. For all model variants, a
uniform steady state exists (H;=H,, Aj=A3). Biologically,
this corresponds to a nondifferentiated state (i.e., the neuro-
genic network is in the same state in both cells). We there-
fore study the stability of this steady state to small perturba-
tions, and we seek to determine the resulting dynamical
behavior of the system in cases where it is unstable.

For each model variant [Figs. 2(b)-2(e)], we first perform
linear stability analysis of the uniform steady state, which
yields an eigenvalue equation. We then determine parameter
values that result in the existence of neutral (pure imaginary)
eigenvalues, which are the product of the imaginary unit
number and the neutral angular frequency, and are associated
with changes in stability. To confirm the nature of bifurca-
tions associated with these eigenvalues, the linear analysis is
followed by numerical simulations. The eigenvalue equation
for each model variant is derived directly from its own
model equations, rather than by reduction in the full Hes-
Her—proneural model. The conditions under which the full
Hes-Her—proneural model can be reduced to the autoactiva-
tion two-proneural model and to the autorepression two-Hes-
Her model are discussed in Sect. VI.

To allow systematic comparison between model variants,
we use a standard set of parameter values—which are listed
in Table I—in both analysis and simulations. These param-
eter values fall into a biologically reasonable range [10,17]
and result in representative model dynamics. Deviations
from this standard set are noted explicitly. The time is mea-
sured in minutes, yielding values for the degradation con-
stants that are in line with measured values for proneural and
neurogenic factors [20,25]. However, the behavior of each
model variant is also examined with other parameter values.
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TABLE 1. Parameter values.

fu 8H 8a fa

Ty K v K v Ty K v K v
Standard 10 0.01 2 0.01 2 10 0.01 2 0.01 2
Figure 3
Top 1 0.1 2 0.1 10 0.01 2 0.01 2
Middle 10 0.1 2 0.01 2 1 0.01 2 0 0
Bottom 10 0.01 2 0.01 2 10 0.01 2 0.01 2

In the following analyses, vy denotes the magnitude of the 1 4
slope of the regulatory function [f,_; ,(x) or g;_; »(x)] at the Te= Z[Tf +tan” (- Tw,)]. (15)

uniform steady-state solution (H_, , or A__, ,). In the cases of
the Hill functions

_ dg.-» vK'x !
.l=12=— I = ! >O, 9
s dxi | (K +x]") ®
. df’:l,Z VKV.X%V_I
di=e 2| <m0 o

where, in general, K and v are different in f;_; ,(x) and in
gj=12(x), and therefore 712 # ¥/;57. In the following sec-
tions, it can be seen that what determines the stability prop-
erties of the homogeneous steady state is not the precise
functional forms of f and g, but the value of 7.

A. Nonautonomous two-proneural model

The nonautonomous two-proneural model [Fig. 2(d)] is
represented by the following differential equations:

TA =-A, +g(Ay(t - 1), (11)

TA,=—A,+g(A,(t- 7). (12)

To study the stability of the uniform steady-state solution
(A]=A%=A%), we set A|(1)=A"+a,(t) and A,(t)=A"+a,(1) in
Egs. (11) and (12). Following linearization, the resulting
coupled equations for a; and a, can be uncoupled by intro-
ducing variables a;+a, and a;—a, [9]. The eigenvalue equa-
tions derived from the equations in these variables are

1+Th= *+ ye ™7, (13)

where the plus and the minus branches are associated with
a;—a, and a+a,, respectively.

We consider first uniform perturbations such that a;=a,.
In this case, only the minus branch of Eq. (13) is relevant.
Assuming a pure imaginary eigenvalue A=iw,, with w, real,
the neutral angular frequency (w,) is derived to be

wc=%wy2—1. (14)

This eigenvalue occurs for parameter values such that y>1
and when the delay is equal to the neutral delay 7,

c

For the standard set of parameter values (Table I), the oscil-
latory period associated with the neutral eigenvalue (the
Hopf period)—defined by 7,.=27/w,—is found to be
38.6501 min, while 7.=13.0548 min. For 7# 7., the minus
branch of Eq. (13) has a complex eigenvalue with a real part
that has the same sign as 7—7,. This can be seen in the
numerical solution of Eq. (13) in Fig. 4.

The linear stability analysis suggests that the uniform
steady state becomes unstable to small uniform perturbations
via a Hopf bifurcation if y>1 and the delay increases above
the critical value. Numerical simulations of Egs. (11) and
(12) for 7> 7, are shown in Fig. 5. For uniform initial con-
ditions [A,(0)=A,(0)] the system exhibits sustained oscilla-
tions [Fig. 5(a)]. This confirms that the neutral solution on
the minus branch of Eq. (13) is a Hopf bifurcation point.

The plus branch of Eq. (13), which is associated with a,
—a,, has the same neutral angular frequency (w,) as the mi-

0.02r : 0.2
A (a) MINUS branch .
35 0.01 . 0153
3 3
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< —_
bt <
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0.04 : : 0.1
“““ =10/(T+v7) _
— el
o Q
= i
< —_
T <
T E

10 20 30 40 50 60
Delay, T (min)

FIG. 4. (Color online) The eigenvalues (\) of the nonautono-
mous two-proneural model [Fig. 2(d)] as a function of delay (7).
The eigenvalue equation [Eq. (13)] has two branches. (a) On the
minus branch Re(\) changes its sign from negative to positive as 7
surpasses its critical value (7.=13.0548), leading to a Hopf bifur-
cation, (b) while on the plus branch it is always positive. The minus
and the plus branches therefore define, respectively, the oscillatory
and the differentiating properties of the system. The dotted line in
(b) shows the approximate analytical value for the real part of the
eigenvalue derived in Eq. (17).
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FIG. 5. (Color online) Numerical simulations of the nonautono-
mous two-proneural model [Fig. 2(d)]. (a) With identical initial val-
ues, A; and A, show sustained in-phase oscillations. (b) With
slightly different initial values, A; and A, show transient in-phase
oscillations followed by differentiation (cf. [15]). Standard param-
eter values are used, as listed in Table I, with 7=20 min.

nus branch, and the neutral eigenvalue occurs for a neutral
delay 7,

1
7.=—tan ! (Tw,), (16)
@,
which takes the value of 6.2702 min for the standard param-
eter set. More generally, the real part of a complex eigen-
value A, satisfies

1+ T Re(\,) = ye ReM7 cog[Im(\,) 7.

Since Re(\,) is given by the intersection of y=1+T7 Re(\,)
and y=y exp[-Re(\,) 7]cos[Im(\,) 7] on the y-Re(\,) plane,
a purely real N, (for which cos[Im(\,)7]=1) has the largest
real part and is positive for all values of 7 if y>1. This
positive real eigenvalue is shown in Fig. 4(b). By assuming a
purely real eigenvalue (Ag,), and by applying the first-order
Taylor expansion to Eq. (13), a simple approximate (lower
bound) expression for A, is derived to be

_r-1
_T+y7"

R+ (17)
which is confirmed to provide a good approximation to the
growth rate of patterns obtained in numerical simulations in
Fig. 4(b). Previously, such an approximation was thought to
be possible only in the limit of a large Hill coefficient (v)
[15], while in Fig. 4, v=2.

The positive real eigenvalue on the plus branch corre-
sponds to differentiation of the two cells (exponential growth
of a;—a,), while the complex eigenvalue associated with the
minus branch corresponds to oscillations (in a;+a,). Thus, if
A,(0) and A,(0) are set slightly different, the behavior of the
system comprises a combination of these two fundamental
modes. This can be seen in the numerical simulation of Egs.
(I11) and (12) in Fig. 5(b), which shows a transient uniform
oscillation followed by differentiation. Since the oscillations
occur on the minus branch corresponding to a;+a,, the os-
cillatory profiles of A; and A, are in phase. Similar transient
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FIG. 6. (Color online) Time taken for differentiation in the non-
autonomous two-proneural model [Fig. 2(d)]. Time courses of the
difference A,—A;, obtained from numerical simulations, plotted on
a logarithmic scale (a) for various delays (7) and initial mean values
(Ap=0.5[A,(0)+A;(0)]) with the standard parameter set and (b) for
various parameter sets with 7=1.57.(H,K,v), where 7. is the criti-
cal delay. The time courses are compared to the growth rate pre-
dicted from linear analysis (dashed line), based on the real part of
the eigenvalue [Re(\)].

oscillations leading to differentiation have been observed
previously in a delay model of the Delta-Notch signaling
system [Fig. 1(a)] [15].

In general, the outcome of linear stability analysis is not
applicable to transient system behavior. Therefore, the sepa-
ration of the two branches makes linear analysis highly valu-
able in this study, making possible the prediction of whether
or not a transient oscillation leading to differentiation occurs.
More striking is the fact that not only the initial rate of dif-
ferentiation, but also the time taken to complete differentia-
tion can be estimated by linear analysis. Figure 6 shows the
time courses of the (logarithmic) difference A,—A; obtained
from numerical simulations for a range of values of the delay
(7) and initial mean values (A;=0.5[A,(0)+A,(0)]). These
are compared to the growth rate predicted by the real part of
the eigenvalue for a,—a; (i.e., the plus branch), obtained
from linear analysis for the corresponding 7 (Fig. 4), which
provides a good estimate of the time taken to reach the fully
differentiated state.
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FIG. 7. (Color online) Neutral (a) intercellular signaling delay
and (b) oscillatory period associated with the pure imaginary eigen-
values of the autoactivation two-proneural model [Fig. 2(b)], shown
as a function of the local-loop delay (7y). The eigenvalue equation
[Eq. (21)] is solved numerically for its minus and plus branches.
The Hopf bifurcation occurs on the minus branch. Also shown in
(b) is the corresponding Hopf period for the nonautonomous two-
proneural model, which lacks the local (cell-autonomous) proneural
feedback loops [Fig. 2(d)]. Numerical simulations performed for
parameter values corresponding to the cross signs in (a) confirm
that the Hopf bifurcation occurs on the minus branch of Eq. (21),
and that the critical intercellular signaling delay (Tg) is modulated
by 7.

B. Autoactivation single-proneural model

Because two sequential repressions result in a net activa-
tion, the nonautonomous two-proneural model [Fig. 2(d)]
may seem to be surrogated by the autoactivation single-
proneural model [Fig. 2(e)], represented by the following
differential equation:

TA=—-A+fA(t-1). (18)

The eigenvalue equation obtained by linearization about a
steady state of Eq. (18) is

1+7T\= ye_”,

which is identical to the plus branch of Eq. (13) that repre-
sents the differentiating nature of the nonautonomous two-
proneural model. It is therefore clear that the oscillation in
the two-proneural model is due to the network structure that
two-proneural proteins are mutually repressing.

C. Autoactivation two-proneural model

The autoactivation two-proneural model [Fig. 2(b)] is rep-
resented by the following differential equations:

TA ;=-A, +g(Ay(t - T)f(A,(t - 7)), (19)

TAy=—Ay+g(A (t - 7)) f(Ay(t - 7). (20)
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FIG. 8. (Color online) Numerical simulations of the autoactiva-
tion two-proneural model [Fig. 2(b)]. In comparison to Fig. 5, the
behavior is found to be qualitatively the same as that of the nonau-
tonomous two-proneural model [Fig. 2(d)]. However, the modula-
tory effect of the cell-autonomous proneural loop, shown in Fig. 7,
is seen in comparison between the top and the middle right panels.
As the local-loop delay (7y) increases from 0 to 15, the amplitude of
oscillations decreases, as influenced by the increase in the critical
signaling delay [Fig. 7(a), solid curve]. Values of the delays, and
whether or not the initial values of A and A, are equal, are speci-
fied in each panel as (7,,7/; =0r#).

The eigenvalue equation for the uniform steady-state solu-
tion (Aj=A3=A") is derived to be

1+TN=g(A")Ye ™7+ f(A*)y8e ™. (21)

The purely imaginary solution A=iw satisfies

— (a)
€ 1501
£ o In-phase oscillation (sims.) ——minus branch — plus branch
oo o Qut-of-phase oscillation (sims.)
~ 100t
e
[}
©
g 5o 5 5.8 8.8.8.5
© e
s | 7 . g.sorE¥ITC
2 9 === | | )
@ 0 20 40 60 80 100
(b)
4001
No solution with t_ < 5.0483
= h
‘€ 300-
= Solid: largest
200 Dashed: 2nd largest i
el
il
@ 100f
o
O T L L L L I
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local-loop delay,‘rh [min]

FIG. 9. (Color online) Neutral (a) intercellular signaling delay
and (b) oscillatory period associated with the pure imaginary eigen-
values of the autorepression two-Hes-Her model [Fig. 2(c)], shown
as a function of the local-loop delay. The eigenvalue equation [Eq.
(25)] is solved for its minus and plus branches, for the first and the
second largest periods (solid and dashed lines, respectively). This
model shows the transition between out-of-phase and in-phase os-
cillations. At each local-loop delay, a square represents the in-phase
oscillation observed in simulation with the lowest signaling delay,
while a circle represents the out-of-phase oscillation observed in
simulation with the highest signaling delay. The transition happens
between them (upper panel), which are overlapping with a square
being always above a circle.
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1+B>- C*+ T°w” + 2B(Tw sin wts— cos wty) =0,
(22)

where B=g(A*)y and C=f(A*)1%.

Figure 7 shows the neutral intercellular signaling delay
and the corresponding oscillatory period, associated with the
pure imaginary eigenvalues, as a function of local-loop delay
(77). The eigenvalue equation [Eq. (21)] is solved for its mi-
nus and plus branches. As T is varied, the values of the
neutral intercellular signaling delay and the neutral oscilla-
tory period fluctuate, with the oscillatory period fluctuating
around its value in the nonautonomous two-proneural model
[Fig. 2(d)]. A similar modulation in period was recently ob-
served in a delayed coupling model of vertebrate segmenta-
tion [26]. Numerical simulations performed for the param-
eter values represented by the cross signs in Fig. 7(a) confirm
that the Hopf bifurcation occurs on the minus branch of Eq.
(21), and that the critical intercellular signaling delay is
modulated by the local-loop delay (data not shown).

Figure 8 shows the results of numerical simulations of the
model equations (19) and (20) for a range of delays (7, and
7) and initial values [A;(0) and A,(0)]. The behavior of this
model variant is found to be qualitatively the same as that of
the nonautonomous two-proneural model [Fig. 2(d)]: the
Hopf bifurcation point exists on the minus branch of the
eigenvalue equation [Eq. (21)] and, since the plus branch
again has a positive real eigenvalue, differentiation occurs
when A,(0) # A,(0). However, the modulatory effect of the
cell-autonomous proneural autoactivation loop, shown in
Fig. 7, is seen in the comparison between the top and the
middle right panels. As the local-loop delay (7y) increases
from 0 to 15, the amplitude of oscillations decreases, as in-
fluenced by the increase in the critical signaling delay [Fig.
7(a), solid curve]. It can be seen from Fig. 7 that the cell-
autonomous proneural autoactivation loops give rise to “tun-
ability” of the oscillations.

D. Autorepression two-Hes-Her model

The autorepression two-Hes-Her model [Fig. 2(c)] is rep-
resented by the following differential equations:

TH,=-H, + g(H,(t - 7,))h(H,(t - 7)), (23)

TH,=—H,+g(H,(t - 7)) h(H,(t - 7). (24)

The eigenvalue equation for the uniform steady-state so-
lution (H;=H,=H") has the same form as that for the auto-
activation two-proneural model [Eq. (21)],

L+ Th=—g(H") '™+ h(H")¥e™%,  (25)

where, however, the definition of B is modified to be B=
—g(H*)v" because h represents a decreasing Hill function.
Figure 9 shows the neutral intercellular signaling delay
and the oscillatory period associated with the pure imaginary
eigenvalues as a function of the delay in the local loop. The
eigenvalue equation [Eq. (25)] is solved for its minus and
plus branches, for the first and the second largest periods.
Unlike any eigenvalue equation of the three simpler models
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FIG. 10. (Color online) Numerical simulations of the autore-
pression two-Hes-Her model [Fig. 2(c)]. In comparison to Fig. 5,
the behavior is found to be qualitatively different to that of the
nonautonomous two-proneural model [Fig. 2(d)]. Specifically, os-
cillations are sustained even with nonidentical initial values, and
oscillations can be out of phase as well as in phase. Values of the
delays, and whether or not the initial values of H, and H, are equal,
are specified in each panel as (7,,7,; =or#).

analyzed so far [Figs. 2(b), 2(d), and 2(e)], Eq. (25) is found
not to have a neutral solution when 7;,<<5.0483 min.
Figure 10 shows the results of numerical simulations of
the model equations (23) and (24) for a range of values of the
delays (7, and 7,,) and initial values [H,(0) and H,(0)]. These
reveal two prominent features of the dynamics of this system
that are qualitatively different to those of the two-proneural
models [Figs. 2(b) and 2(d)]. First, oscillations can be sus-
tained (rather than transient) even when H,(0) # H,(0); sec-
ond, the oscillations of H; and H, can be out of phase for
certain values of the delays, as shown in the left bottom
panel. Figure 11 details the transition from out-of-phase os-
cillations to in-phase oscillations as the value of the critical
intercellular signaling delay (7,) increases. Strikingly, the
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0.2 0.2 0.2

Q (0] Q
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- 2
0.1t 7=15; H,(0)#H,(0) 0.1
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FIG. 11. (Color online) Details of the transition from out-of-
phase to in-phase oscillations as the value of 7, increases in the
autorepression two-Hes-Her model [Figs. 2(c) and 10]. The transi-

tion is associated with amplitude death around 7,=6.
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transition is found to be associated with a pointwise ampli-
tude death [27]. The transition found in numerical simula-
tions with various 7, is compared to the neutral properties
estimated by the linear analysis in Fig. 9. In a cell-
autonomous Hes-Her oscillator, the oscillatory period in-
creases monotonically with delay [18], while for the coupled
cells to cycle out of phase, the signaling delay must be about
half a period. Therefore the monotonic increase in the critical
7, and in the critical period (7,) suggests that the overall

FAf----=-=====-------: single H - - network behavior of the autorepression two-Hes-Her model
0.02f is controlled by the two local autonomous Hes-Her oscilla-
1, =15 tors.
@ % 0 m o~ 00 100 In contrast, when the intercellular signaling delay (7,) is
varied while the local delay (7;,) is kept constant, transitions
100 \ \ between in-phase and out-of-phase modes occur sequentially
—o—period —&—lag and are associated with modulations in amplitude and period
8ol | (Fig. 12). The mode transitions repeat as 7, is increased, but
_ not in an identical manner. Unlike the first transition shown
£ in Fig. 11, a clear amplitude death is not observed at higher-
— 60 order transitions. Further examination reveals that the se-
2 quential transitions are not induced by the network structure
- 2 single H period- 1 of two mutually repressive autonomous oscillators, but by
g period /2" the structure of two mutually influencing autonomous oscil-
00 | lators, forming an overall positive feedback loop. Indeed,
when intercellular interactions are modeled by an increasing
=19 Hill function that represents activation, the transition still
00 20 ‘ 6‘0 80 100 occurs, but in a reverse order, starting from the in-phase
(b) signalling delay, 7, [ min] mode at 7,=0 (data not shown).
0.12
0.3 0.3 002
@7t,=0 (b) T =21
0.0 _H1 —H2 0.2 0.1+ 0.015 A
. 0.01
0.1 0.1 | 0.08 0008 ]
Q 0 3 0.06} % 1 2545 6 7
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Qo
0.3 03 § 0.04f
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02 0.2 0.02%
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@ °
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FIG. 12. (Color online) Dependence of the amplitude (top
panel) and period (middle panel) of oscillatory solutions on the =
intercellular signaling delay (7,) in the autorepression two-Hes-Her E
model. The amplitude of an oscillatory solution is defined as the o
half difference between peak and trough values. The observed 8
modulations of amplitude and period reflect the transition between E
out-of-phase (OP) and in-phase (IP) oscillation modes; the compari- g
son between the lag (time difference between oscillation peaks in
neighboring cells) and the half-periods of oscillations shown in the
middle panel illustrates the sequential switching between out-of-
phase and in-phase oscillation modes. The bottom four panels show 0 20 40 60 80 100
time courses obtained by numerical simulation of Egs. (23) and (24) (b) signalling delay, [ min]

at the four values of 7, marked in the top panel. The first transition
corresponds to Fig. 11. The dashed lines in the top and the middle
panels represent, respectively, the amplitude and the period in the
single-cell Hes-Her model with a local delay 7,=15.

FIG. 13. (Color online) Coupled subcritical oscillators illustrat-
ing a finite-7,-range oscillation death. The inset in the top panel
shows the oscillation death in detail.
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The intercellular coupling is found to have additional dy-
namical consequences. While an isolated cell containing the
Hes-Her feedback loop cannot exhibit sustained oscillations
when the delay (7,) is below its critical value, such a local-
loop critical delay (7, ;) can be lowered by the intercellular
coupling, as shown in Fig. 13, where 7,=10<7, .
=13.0548. Furthermore, oscillation death is found to happen
in a definite range of the intercellular signaling delay (7).

The three features observed in numerical simulations—
the oscillation in an originally subcritical delay range (7,
<7, ) the transition between out-of-phase and in-phase os-
cillatory modes, and the finite-7,-range oscillation death—
can be understood analytically as follows. Linearization of
Egs. (23) and (24) around the uniform steady state yields

1+T’}\+0f B ﬁ] I:Il 0
B 1+T\+«a H, H, 0

25 w
| =—©—minus branch

—&— minus branch
r —©&— plus branch

N
o

local-loop delay, T, [min]

0 2 4 6 8 10

D
2

100 , / , .
<
£
|_O
°
2
153
o

O L L L L I}
0 20 40 60 80 100

(b) signalling delay,‘cg [min]

FIG. 14. (Color online) The origin of oscillation death and the
transition between the out-of-phase and the in-phase oscillatory
modes in the autorepression two-Hes-Her model [Fig. 2(c)]. Neutral
local-loop delay (upper panel) and oscillatory period (lower panel)
are shown as functions of the intercellular signaling delay 7,. The
eigenvalue equation [Eq. (25)] is solved numerically for its minus
and plus branches. Neither the out-of-phase nor the in-phase branch
has a solution for 7;,=10 for 2=7,<5.1, corresponding to the os-
cillation death observed in Fig. 13. Simulated periods for 7,=15
(shown also in Fig. 12, middle panel) are shown by blue and green
dots in the lower panel, where the neutral period obtained by linear
stability analysis is shown by solid and dashed curves (correspond-
ing to the neutral delay being smaller or larger than 7,=15, respec-
tively). Note the different horizontal scales in the two panels.
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where a=g(H*)y'e™™ and B=h(H")y%¢™ . The associated
eigenvalue equation, given by det M=0, is

l+Th=—a=* B, (27)

which is the same as Eq. (25). By substituting Eq. (27) into
Eq. (26), it can be seen that the plus branch is associated

with the out-of-phase oscillation mode: (H,,H,)=(1,-1),
whereas the minus branch is associated with the in-phase

oscillation mode: (H,,H,)=(1,1). Numerical evaluation of
the eigenvalue equation yields the relations between the neu-
tral delay in the local loop (7, ;) and the intercellular sig-
naling delay (7,) shown in Fig. 14, for both the out-of-phase
and the in-phase modes. For example, for 7,=10 (Fig. 13),
when 0<7,<2 only the out-of-phase mode is allowed,
whereas when 7,=5.1 only the in-phase mode is allowed. In
between (2<7,<5.1), no oscillation is allowed, explaining
the origin of the oscillation death shown in Fig. 13. However,
the comparison of periods to simulation results in the lower
panel shows that as T, increases, more and more branches
appear, and the model behavior becomes more nonlinear. The
actual transitions observed in simulations do not coincide
with the boundaries between the regions that linear stability
analysis predicts to be competent (solid curve) and incompe-
tent (dashed curve) for sustained oscillations.

It is striking that, only by changing the local loop attached
to the nonautonomous two-X model from autoactivation
[Fig. 2(b), where X is proneural] to autorepression [Fig. 2(c),
where X is Hes-Her], the network behavior changes com-
pletely. This simple example, motivated by the structure of-
the neural differentiation network, highlights the importance
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FIG. 15. (Color online) The largest neutral period (7,) associ-
ated with the eigenvalues of the autorepression two-Hes-Her model
[Fig. 2(c)] for different values of the threshold (K},) and the Hill
coefficient (v,,) in the local feedback loop. As K, increases, the
behavior of this model becomes similar to that of the autoactivation
two-proneural model [Fig. 2(b)], while as v, decreases, the behavior
becomes similar to that of the nonautonomous two-proneural model
[Fig. 2(d)]. Note the different vertical scales in each plot. The
dashed-dotted line in each panel represents the critical period in the
nonautonomous two-cell model. Varied parameters are given in
each panel as (K}, vy,).
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of examining in detail the structure of any gene regulatory
network, even if it is centered on a small and seemingly
simple motif.

The richness in the behavior of this autorepression two-
Hes-Her model can be seen in Fig. 15, where the largest
neutral period (7,) associated with the eigenvalues is plotted
for different values of the threshold (K;) and Hill coefficient
(v,) in the local feedback loop. As Kj, increases, the behavior
of this model becomes similar to that of the autoactivation
two-proneural model [Fig. 2(b)], while as v, decreases, the
behavior becomes similar to that of the nonautonomous two-
proneural model [Fig. 2(d)].

V. EXTENSION TO N-CELL RING MODEL

The two-cell models discussed so far can be naturally
extended to one-dimensional arrays of cells. To avoid poten-
tial boundary effects, we consider the specific case of a ring
of N cells labeled with a single index i=1,2,...,N (i.e., a
line of cells with periodic boundary conditions imposed). As
an example, we study the autorepression Hes-Her model. We

0 B-\T A 0 0 0
0 A B-\T A 0 0
0 0 A B-\T A O
0 A 0 0 0 0

where it is important to note that A and B are nonpolynomial
functions of . The eigenvalues N\ are determined by det M
=0.

We first note that the phase relations between adjacent
cells in oscillatory solutions can be determined from the

form of the eigenvector (H,,H,,...,Hy) corresponding to
each eigenvalue. For any value of N, Eq. (30) has an
eigenvector (1,1,...,1) with an eigenvalue determined
by the solutions of TA=B+2A. This corresponds to an oscil-
latory mode where all cells are in phase. Furthermore,
for any even value of N, Eq. (30) has an eigenvector
(1,-1,1,...,1,-1) with an eigenvalue determined by the
solutions of TA=B—-2A. This corresponds to an oscillatory
mode where all cells are out of phase. These two cases are
simple extensions of the dynamics observed in the two-cell
model.

To illustrate potential extensions to the dynamics ob-
served in the two-cell model, we consider the specific case
N=4,

PHYSICAL REVIEW E 80, 021930 (2009)

assume that each cell signals equally to both its nearest
neighbors, yielding the following model equations:

. (Hi—l(t_Tg)+Hi+](t_Tg)>

TH;=-H;+ h(H{t - 7,))g 2

(28)

where i denotes cell number and the imposition of periodic
boundary conditions implies that H_j=Hy and Hy, =H,.
Linearizing Eq. (28) around the uniform steady-state solution

(H;=H*) by expanding H; as H;=H"+H;e" yields the fol-
lowing eigenvalue equations:

0=AH,_,+(B-\DH;+AH,,,, i=12,....N, (29)
where

AN) == sh(H") ye ™,

B(\)=—1—g(H")y'e™".

Equation (29) can be represented in matrix form as

00 A H, H,
00 0 H, H,
00 0 i, i,
=M , (30)
0 A B-\T i, i,
[
B-\T A 0 A
A B-\T A 0
M= s (31)
0 A  B-\T
A 0 A B-\T
and

det M= (-2A + T\ - B)(2A + T\ - B)(- B+ T\)”.
Therefore, the eigenvalues are determined by the solutions of

TN=B 7 24, (32)

T\=B. (33)

The explicit expression of Egs. (32) and (33) are found to be
the same as the eigenvalue equations derived for the autore-
pression two-Hes-Her model [Eq. (25)], and for the autore-
pression single-Hes-Her model [the minus branch of Eg.
(13)], respectively.
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FIG. 16. (Color online) Complex oscillatory dynamics in one-
dimensional arrays of coupled cells. Simulations of Egs. (28), rep-
resenting the autorepression Hes-Her model in a ring of N cells.
Simulations were carried out using the standard parameter values
(Table I) with 7,=20, 7,=8, and with initial history H;(r)=0.1
+0.1¢; for —max(7,,7,) =r=0, where & are drawn from indepen-
dent uniform distributions on [0,1]. (a) Amplitude death combined
with out-of-phase oscillations: N=4. (b) Complex dynamics result-
ing from mode interactions: N=7.

As above, the phase relations between adjacent cells in
oscillatory solutions can be determined from the form of the

eigenvector (H,,H,,H;,H,) corresponding to each eigen-
value. From Eq. (31), the eigenvector on the minus branch of
Eq. (32) is found to be (1,-1,1,-1), representing the out-
of-phase oscillatory mode, while the eigenvector on the plus
branch is (1,1,1,1), representing the in-phase mode. In con-
trast, the eigenvector associated with Eq. (33), which is
present when N=4,8,16,..., is found to be (1,0,-1,0), rep-
resenting amplitude death for every other cell in the array,
with the remaining cells being out of phase. This is a unique
dynamical feature that the two-cell model fails to capture. An
example of this mode for N=4 is shown in Fig. 16(a).

For larger values of N, the interaction between multiple
modes can result in a more complex oscillatory behavior, in
which waves of phase and amplitude differences can propa-
gate around the ring. Furthermore, the oscillatory profile for
each cell is often complex, with multiple peaks per oscilla-
tory period and “intermittent” oscillations being common.
An example for N=7 is shown in Fig. 16(b). These features
are also observed in simulations on regular square and hex-
agonal two-dimensional arrays of cells (results not shown).

VI. ANALYSIS AND REDUCTIONS IN THE FULL
Hes-Her-PRONEURAL MODEL

In this section, from the viewpoint of eigenvalue equa-
tions, it is discussed how the full Hes-Her—proneural model

PHYSICAL REVIEW E 80, 021930 (2009)

[Fig. 2(a)] is related to the autoactivation proneural model
[Fig. 2(b)] and to the autorepression Hes-Her model [Fig.
2(c)]. For the uniform steady-state solution (H,=H,
=H", A]=A;=A%) of the full Hes-Her—proneural model, the
eigenvalue equation is derived from its model equations
(1)—(4) to be

(14 TyN+ae™™3)(1 + TyN = ce™™) = =+ bde ™",
(34)

where a=f(A")y%2,  b=f,(A")y", c=gi(H)Y2 d
=g,(H") Y, and 7, =7+ 7.

First, explicit forms of the neutral angular frequency (w,)
and delay (7,,,) are derived for a simple example, where T,
=Ty=T, 3=74=1, and f;=f,=g,=g,. The last assumption
means that K and v are, respectively, the same all in f;, f>,
g1, and g,. Then, from Egs. (9) and (10), A*=H*, and con-
sequently a=c=b=d:= ¢. Therefore, Eq. (34) becomes

1+ 2T\ + T2\ — P PMa= + e ™Mo, (35)
For a neutral solution, Eq. (35) becomes

(1 -T?w? - ¢ cos 2w7,)* + 2Tw + ¢* sin 2w7,)* = ¢*,

(36)
_ 2Tw+ ¢*sin 207, _
tan w7, = + SR = FA. (37)
1 -T"w" - ¢ cos 2wT,
For the plus branch in Eq. (34),
1
T,pr = —max[tan~! (= A), 7+ tan"! (= A)], (38)
1)
whereas for the minus branch in Eq. (34),
1
T = —max[tan~'(+ A), 7w+ tan~'(+ A)]. (39)
1)

Figure 17 shows the neutral (a) intercellular signaling de-
lay and (b) period, as a function of the local-loop delay (7,).
The eigenvalue equation [Eq. (35)] is solved for its minus
and plus branches, for the first and the second largest peri-
ods. In comparison to Figs. 7 and 9, the autorepression two-
Hes-Her circuit component is found to be dominant in this
full Hes-Her—proneural model, although the neutral values
are found to exist for any 7,, unlike in the autorepression
two-Hes-Her model, where no pure imaginary solution can
exist for 7 less than 5.0483 (7 corresponds to 7, in this
section).

In the following, based on the eigenvalue equation of the
full Hes-Her—proneural model [Eq. (34)], we clarify the con-
ditions under which this full Hes-Her—proneural model can
be reduced to the autoactivation two-proneural model [Fig.
2(b)] and to the autorepression two-Hes-Her model [Fig.

2(c)].

A. Reduction to the autoactivation two-proneural model

The eigenvalue equation of the full Hes-Her—proneural
model [Eq. (34)] is reduced to the eigenvalue equation of the
autoactivation two-proneural model [Eq. (21)] when (a) Ty
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FIG. 17. (Color online) Neutral (a) intercellular signaling delay
and (b) period, associated with the pure imaginary eigenvalues of
the full Hes-Her—proneural model, shown as a function of the local-
loop delay. The eigenvalue equation [Eq. (35)] is solved for its
minus and plus branches, for the first and the second largest periods
(solid and dashed lines, respectively). In comparison to Figs. 7 and
9, the autorepression two-Hes-Her circuit component is found to be
dominant in this full Hes-Her—proneural model.

=0, (b) ¥%2=0, (c) H*=A*, (d) g,(H")y=1, and (e) 7,=0.
These conditions must hold irrespective of whether f; and g;
are Hill functions or not. If Hill functions f(x,K,v) and
g(x,K,v), where K and v are the scaled threshold and the
Hill coefficient, are employed, condition (b) can be met by
setting K in g, to be +%. Because this operation makes
g,(H")=1, from the steady-state solution of the full model
[H'=f,(A")g,(H")], condition (c) is found to require that f;
is not a Hill function but a linear function: f;(x)=x, whereby
¥/1=1, making all five conditions satisfied. The last opera-
tion [f;(x)=x] means that for a sequence of two functions f
and g to be represented only by g, f needs to be f(x)=x. In
short, the autoactivation two-proneural model [Egs. (19) and
(20)] is obtained by assuming the following conditions on
the full Hes-Her—proneural model [Egs. (1)—(4)]: the activa-
tion from a proneural protein (A,_; ,) to the adjacent Hes-Her
(H;=) is linear and instantaneous and Hes-Her is not asso-
ciated with an autorepression loop.

B. Reduction to the autorepression two-Hes-Her model

The eigenvalue equation of the full Hes-Her—proneural
model [Eq. (34)] is reduced to the eigenvalue equation of the
autorepression two-Hes-Her model [Eq. (25)] when (a) T,
=0, (b) ¥2=0, (¢) f1(A")=g,(H"), (d) fo(A")¥"1=1, and (e)
71=0. These conditions must hold irrespective of whether f;
and g; are Hill functions or not. If Hill functions are em-
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ployed, condition (b) can be met by setting K in f, to be 0.
Because this operation makes f,(A*)=1, from the steady-
state solution of the full model [A*=g,(H")f,(A¥)], condition
(c) is found to require that f; is not a Hill function but a
linear function: f;(x)=x, whereby y1=1, making all five
conditions.

VII. GENERAL DISCUSSION

The development of multicellular organisms is a process
of sequential and concurrent cell differentiations, the timings
of which must be tightly controlled. Recent experimental
studies have revealed that in the case of vertebrate neural
differentiation, cell differentiation can occur after a transient
oscillation in cell state [22]. Since neural differentiation in
vertebrates occurs over a considerable time interval, these
transient oscillations may play a role in the scheduling of
neural differentiation in relation to other developmental
events. The occurrence of such transient oscillations on the
route to neural differentiation was previously predicted in a
simple delay model of Delta-Notch-mediated lateral inhibi-
tion [15].

In the present study, we have analyzed a more detailed
model of the neural differentiation network. The model has a
nested-loop structure, with intercellular signaling (as medi-
ated by interactions between DSL ligands and Notch family
receptors) coupled to local cell-autonomous feedback loops.
Using a combination of stability analysis and numerical
simulation, we have shown that the incorporation of local
feedback loops has potentially significant impacts on the dy-
namics of the signaling network. In particular, the time de-
lays in the local feedback loops were found to play a central
role in controlling the behavior of the whole network
whether it heads toward differentiation, whether it shows an
oscillation, or whether such an oscillation is sustained or
transient, as well as providing tunability in the amplitude and
period of oscillations.

Many classes of autoregulatory genes have been identi-
fied. Because these genes are also nodes in larger genetic
regulatory networks, nested feedback loop structures are
rather common. The results of the present study highlight the
need for careful examination of the predictions made by non-
delay network models, which include the Drosophila neuro-
genic model studied by Meir et al. that yielded a conclusion
that the total system was robust to local changes to the net-
work circuitry [10].

In a more general perspective, a biological system is
known to involve a relatively small number of genes, having
numerous features and functions. Some of the present func-
tions may have been acquired by the addition of a few local
loops to the old conserved ones. Moreover, because the loops
considered in the present study are all very simple, the out-
comes of the present study may have relevance to nonbio-
logical systems as well.
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